C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name: Problem Solving-II

Subject Code: 5SC0	3PRS1	Branch: M.Sc. (Mathematics)			
Semester: 3	Date: 25/11/2022	Time: 11:00 To 02:00	Marks: 70		

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions.	[07]
	a. b. c.	Classify the region in which the equation $x^2r - 2s + t = 0$ is hyperbolic. Is a group of order 10 simple? Verify. Solve: $p^2 - q^2 = x - y$.	(02) (02) (02)
	d.	How many different commutative binary operations can be defined on the set $\{a, 1\}$?	(01)
Q-2		Attempt all questions	[14]
	a.	Show that a group of order 20449 is abelian.	(06)
	b.	With proper justification, prove or disprove: If G is a group of order pq then G has at least one subgroup having order p, where p, q are prime numbers and $p > q$. Also state the result you use.	(05)
	c.	Does there exist a group G with $o\left(\frac{G}{Z(G)}\right) = 79$? Justify. OR	(03)
Q-2		Attempt all questions	[14]
	a.	Find the total number of irreducible monic quadratic polynomials in $Z_P[X]$, where p is prime.	(06)
	b.	Let <i>G</i> be a finite abelian group of order <i>n</i> . When the map $\phi: x \to x^m$ be an automorphism? Justify.	(05)
	c.	Show that $\{1, -1, i, -i\}$ is an abelian group of order 4 under multiplication.	(03)
Q-3		Attempt all questions.	[14]
	a.	Find complete integral of $(p^2 + q^2) = qz$ using charpit's method.	(06)
	b.	Solve: $(D^2 - 5DD' + 4D'^2)z = sin(4x + y)$	(05)
	c.	Show that the polynomial $x^{p^n} - x \in Z_p[x]$ can't have a root with multiplicity greater than 1.	(03)

					OR						
Q-3	a.	Attempt all questions a. Solve $\frac{dy}{dx} = x^2 + y^2$ given $y(1) = 1.2$ Find $y(1.05)$ using fourth order									
	b.	Runge Kutta's method (take $h = 0.05$).									
	following table:										
		$\frac{x}{f(x)}$	4 48	5	7 294	10 900	11 1210	12 2028			
	c. Find order of all elements in $U(15)$.										
				SE	CTION	– II					
Q-4		Attempt the Following questions.									
	a. Let $\alpha = (1357986)(2410)$. Find the smallest integer <i>n</i> for which $\alpha^n = \alpha^{-5}$.										
	b.	Construct			05)				(02)		
	c. d.	Find 1som Find $\Delta^5 e^7$		oup to $U(1)$	05).				(02) (01)		
	u.	I IIId A C	•						(01)		
Q-5		Attempt a							[14]		
	a.					$x^{+y}(1+xy)$).		(06) (05)		
	b.	. 0									
	c.	y' = 1 - 2xy, $y(0) = 0$. Take $h = 0.2$. Let G be a non-abelian group of order p^3 where p is prime then find									
	o(G/Z(G)).										
0.5		• • • •			OR				[4 4]		
Q-5	a.	Attempt a Solve the	-						[14] (05)		
	a.	Solve the system of equations 3x + y - z = 3									
	2x - 8y + z = -5										
	x - 2y + 9z = 8										
				nation meth		2 2					
	b.	-		gral of $z(xp)$		-		$f(\omega) = 14$	(05)		
	c.					(10) = 13.5			(04)		
Q-6	Attempt all questions								[14]		
	a.	Solve the	Heat Equ	ation $\frac{\partial^2 \varphi}{\partial r^2}$ +	$\frac{\partial^2 \varphi}{\partial y^2} = \frac{1}{k} \frac{\partial^2 \varphi}{\partial y^2}$	$\frac{\partial \varphi}{\partial t}$ by the m	ethod of se	paration of	(06)		
				that the sol	e y						
		$\varphi(x,y,t)$	$=e^{\pm i(nx)}$	$(n^2 + my) - (n^2 + my)$	<i>hm²)kt</i> wh	ere n and m	are some c	constants.			
	b.	Find a rea	l root of t	he equatior	$x^3 + x^2$	-1 = 0 us	ing Iteratio	n method.	(04)		
	c.		values of	f n, the poly	ynomial <i>p</i>	$p(x) = x^3 - $	-nx + 2 is	reducible	(04)		
		over Q ?			OD						

OR

Page **2** of **3**

Q-6 Attempt all questions

Attempt all questions[14]a. For which values of a the following system of equations have no solution?
Exactly one solution?
$$x + 2y - 3z = 4$$
, $3x - y + 5z = 2$, $4x + y + (a^2 - 14)z = a + 2$ (06)b. Find the missing value in the following data:
 $X \ 1 \ 2 \ 5 \ 7 \ --- \ 32$ (05)c. Find $\Delta(e^{ax} \log (\log bx))$.(03)

Page **3** of **3**

